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Neutrino Oscillation Phenomenology∗†

Boris Kayser

Fermilab, MS106, P.O. Box 500, Batavia IL 60510

1 Introduction

Progress on our understanding of the neutrinos continues to be exhilarating. This progress is
due mainly to experiments on neutrino oscillation. Here, we explain the physics of oscillation
in vacuum and in matter.

2 The physics of neutrino oscillation

Treatments of the physics of neutrino oscillation may be found in, for example, [1, 2]. Here,
we give a slightly modified treatment, and explain some points that have caused puzzlement,
such as the fact that, even if neutrinos are their own antiparticles, their interaction with
matter can still cause a difference between neutrino and so-called “antineutrino” oscillations.

We assume that the couplings of the neutrinos and charged leptons to the W boson are
correctly described by the Standard Model, extended to take leptonic mixing into account.
These couplings are then summarized by the Lagrangian

LW = − g√
2

∑

α=e,µ,τ
i=1,2,3

(ℓLαγλUαiνLiW
−
λ + νLiγ

λU∗
αiℓLαW+

λ ) . (1)

Here, L denotes left-handed chiral projection, ℓα is the charged-lepton mass eigenstate of
flavor α (ℓe is the electron, ℓµ the muon, and ℓτ the tau), and νi is a neutrino mass eigenstate.
The constant g is the semiweak coupling constant, and U is the leptonic mixing matrix [3].
Supposing, as assumed by Eq. (1), that there are only three charged-lepton mass eigenstates,
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2 Boris Kayser

and three neutrino mass eigenstates, U is 3 × 3, and may be written as

U =











Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3











. (2)

In the extended Standard Model, the 3 × 3 mixing matrix U is unitary, and we shall
assume that this is also true in nature. However, we note that if there are “sterile” neutrinos
(neutrinos that do not couple to the W or Z boson), then there are N > 3 neutrino mass
eigenstates, and the leptonic mixing matrix U that is unitary is N × N , rather than 3 × 3.
The 3 × 3 matrix of Eq. (2) is then just a submatrix, and is not unitary [4].

Supposing that the unitary mixing matrix is N×N , not because of the existence of sterile
neutrinos but because there are N conventional lepton generations, how many physically-
significant parameters does U contain? To see how many, we note first that an N×N complex
matrix contains N2 entries, each of which may have a real and an imaginary part. Thus, the
matrix can be fully specified by 2N2 real parameters. If the matrix is unitary, then each of its
columns must be a vector of unit length:

∑

α |Uαi|2 = 1; i = 1, N . Together, these conditions
are N constraints. In addition, each pair of columns in U must be orthogonal vectors:
∑

α U∗
αi Uαj = 0; i, j = 1, N with i 6= j. Taking into account that each of these N(N − 1)/2

orthogonality conditions has both a real and an imaginary part, we see that these conditions
impose N(N − 1) constraints. Thus, the number of independent parameters in a general
N × N unitary matrix is 2N2 − N − N(N − 1) = N2. However, in the case of our unitary
matrix, U , some of these parameters may be removed. From Eq. (1), 〈ℓα|LW |νiW

−〉 ∝ Uαi.
Now, without affecting the physics, we are always free to redefine the state 〈ℓα| by multiplying
it by a phase factor: 〈ℓα| → 〈ℓ′α| = 〈ℓα|e−iϕα. Clearly, this has the effect of multiplying the
Uαi, for all i, by the same factor: Uαi → U ′

αi = e−iϕαUαi. If there are N ℓα, this phase
redefinition of them may be used to remove N phases from U . It might be thought that
analogous phase redefinition of the neutrinos νi could be used to remove additional phases.
However, unlike the quarks and charged leptons, the neutrino mass eigenstates νi may be
their own antiparticles: νi = νi. This possibility motivates the search for neutrinoless nuclear
double beta decay, as discussed at this school by K. Zuber. If νi = νi, then physically
significant phases cannot be eliminated by phase redefinition of the νi [5]. To allow for the
possibility that νi = νi, we shall retain the phases that can be eliminated only when νi 6= νi.
Then U is left with N2 − N physically significant parameters. These are commonly chosen
to be “mixing angles”—parameters that would be present even if U were real—and complex
phase factors. To see how many of the parameters are mixing angles, and how many are
phases, let us imagine for a moment that U is real. Then it can be fully specified by its N2

real entries. These are subject to the unitarity requirement that the N columns of U all have
unit length:

∑

α U2
αi = 1, i = 1, N , and the requirement that all N(N−1)/2 pairs of columns

be orthogonal:
∑

α UαiUαj = 0, i, j = 1, N with i 6= j. Hence, a real mixing matrix U for
N generations has N2 − N − N(N − 1)/2 = N(N − 1)/2 physically significant parameters,
and a complex one has this number of mixing angles. Since a complex U has N(N − 1)
physically significant parameters in all, the fact that N(N − 1)/2 of them are mixing angles
means that the remaining N(N − 1)/2 must be complex phase factors.

In summary, a complex N × N unitary mixing matrix U for N lepton generations may
contain—
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N(N-1)/2 mixing angles

N(N-1)/2 complex phase factors

N(N-1) physically significant parameters in all

Throughout most of these lecture notes, we will assume that N = 3. Then the mixing
matrix contains three mixing angles and three complex phase factors. It can be shown that
this matrix can be written in the form

U =











1 0 0

0 c23 s23

0 −s23 c23











×











c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13











×











c12 s12 0

−s12 c12 0

0 0 1











×











eiξ1/2 0 0

0 eiξ2/2 0

0 0 1











. (3)

Here, cij ≡ cos θij and sij ≡ sin θij , where the θij are the three mixing angles. The quantities
δ, ξ1, and ξ2 are the three complex phases.

From Eq. (1), we observe that the amplitude for the decay W+ → ℓα + νi to yield the
particular charged-lepton mass eigenstate ℓα in combination with the particular neutrino
mass eigenstate νi is proportional to U∗

αi. Thus, if we define the “neutrino state of flavor α”,
|να〉, with α = e, µ, or τ , to be the neutrino state that accompanies the particular charged
lepton ℓα in leptonic W+ decay, then we must have

|να〉 =
3

∑

i=1

U∗
αi |νi〉 . (4)

From Eq. (1), the amplitude for this να to interact and produce the particular charged-lepton
ℓβ is proportional to

3
∑

i=1

UβiU
∗
αi = δβα , (5)

where we have invoked the unitarity of U . We see that when a νe, the neutrino born in a
W+ decay that produced an ē, interacts and produces a second charged lepton, the latter
can only be an e. Similarly for νµ and ντ .

We may invert Eq. (4) to obtain

|νi〉 =
∑

α=e,µ,τ

Uαi|να〉 . (6)

This expresses the mass eigenstate |νi〉 in terms of the states of definite flavor, |να〉. We see
that the flavor-α fraction of |νi〉 is simply |Uαi|2.

2.1 Neutrino oscillation in vacuum

Consider the vacuum neutrino oscillation experiment depicted schematically in the upper
part of Figure 1. A neutrino source produces, via W exchange, the charged lepton ℓα of
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Figure 1. Neutrino flavor change (oscillation) in vacuum. “Amp” denotes an amplitude.

flavor α, plus an accompanying neutrino that, by definition, must be a να. The neutrino
then propagates, in vacuum, a distance L to a target/detector. There, it interacts via W
exchange and produces a second charged lepton ℓβ of flavor β. Thus, at the moment of its
interaction in the detector, the neutrino is a νβ. If the flavors α and β are different, then,
during the neutrino’s trip to the detector, it has changed, or “oscillated”, from a να into a
νβ.

In the neutrino mass eigenstate basis, the particle that travels from the neutrino source
to the detector is one or another of the mass eigenstates νi. In a given event, we will not
know which νi was actually involved. Hence, the amplitude for the oscillation να → νβ,
Amp (να → νβ), is a coherent sum over the contributions of all the νi, as shown in the lower
part of Figure 1. The contribution of an individual νi is a product of three factors. The
first is the amplitude for the neutrino produced together with the charged lepton ℓα to be,
in particular, a νi. From Eq. (1), this amplitude is U∗

αi, as indicated in Figure 1. The second
factor, Prop (νi), is the amplitude for the mass eigenstate νi to propagate from the source
to the detector. The final factor is the amplitude for the charged lepton created when the
νi interacts in the detector to be, in particular, an ℓβ. From Eq. (1), this amplitude is Uβi.

From elementary quantum mechanics, the propagation amplitude Prop(νi) is simply
exp [−imiτi], where mi is the mass of νi, and τi is the proper time that elapses in the νi

rest frame during its propagation. By Lorentz invariance, miτi = Eit − piL, where L is the
lab-frame distance between the neutrino source and the detector, t is the lab-frame time
taken for the beam to traverse this distance, and Ei and pi are, respectively, the lab-frame
energy and momentum of the νi component of the beam.

Once the absolute square |Amp (να → νβ)|2 is taken to compute the probability for the
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oscillation να → νβ, only the relative phases of the propagation amplitudes Prop (νi) for
different mass eigenstates will have physical consequences. From the discussion above, the
relative phase of Prop (ν1) and Prop (ν2), δφ(12) is given by

δφ(12) = (E2t − p2L) − (E1t − p1L)

= (p1 − p2)L − (E1 − E2)t . (7)

In practice, experiments do not measure the transit time t. However, Lipkin has shown [6]
that, to an excellent approximation, t may be taken to be L/v̄, where

v̄ ≡ p1 + p2

E1 + E2

(8)

is an approximation to the average of the velocities of the ν1 and ν2 components of the beam.
We then have

δφ(12) ∼= p2
1 − p2

2

p1 + p2

L − E2
1 − E2

2

p1 + p2

L

= (m2

2 − m2

1)
L

p1 + p2

∼= (m2

2 − m2

1)
L

2E
, (9)

where, in the last step, we have used the fact that for highly relativistic neutrinos, p1 and
p2 are both approximately equal to the beam energy E. We conclude that all the relative
phases in Amp( να → νβ) will be correct if we take

Prop (νi) = e−im2
i

L/2E . (10)

Combining the factors that appear in the lower part of Figure 1, we have

Amp (να → νβ) =
∑

i

U∗
αie

−im2
i L/2EUβi . (11)

Squaring, and making judicious use of the unitarity of U , we find that the probability of
να → νβ, P (να → νβ), is given by

P(να → νβ) = |Amp (να → νβ)|2
= δαβ − 4

∑

i>j

Re (U∗
αiUβiUαjU

∗
βj) sin2(∆m2

ijL/4E)

+ 2
∑

i>j

Im (U∗
αiUβiUαjU

∗
βj) sin(∆m2

ijL/2E) . (12)

Here, ∆m2
ij ≡ m2

i − m2
j is the splitting between the squared masses of νi and νj . It is clear

from the derivation of Eq. (12) that this expression would hold for any number of flavors
and equal number of mass eigenstates.

Given that the particles described by the oscillation probability of Eq. (12) are born with
an ℓα and convert into an ℓβ in the detector, they are neutrinos, rather than antineutrinos
(should there be a difference). To obtain the corresponding oscillation probability for an-
tineutrinos, we observe that να → νβ is the CPT-mirror image of νβ → να. Thus, if CPT
invariance holds,

P(να → νβ) = P(νβ → να) . (13)
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Now, from Eq. (12), we see that

P(νβ → να; U) = P(να → νβ; U∗) . (14)

Hence, assuming CPT invariance holds,

P(να → νβ ; U) = P(να → νβ; U∗) . (15)

That is, the probability for oscillation of an antineutrino is the same as that for a neutrino,
except that the mixing matrix U is replaced by its complex conjugate. Thus, from Eq. (12),

P(
( )
να → ( )

νβ ) = δαβ − 4
∑

i>j

Re (U∗
αiUβiUαjU

∗
βj) sin2(∆m2

ijL/4E)

+

( − )
2

∑

i>j

Im (U∗
αiUβiUαjU

∗
βj) sin(∆m2

ijL/2E) . (16)

We see that if U is not real, the probabilities for να → νβ and for the corresponding an-
tineutrino oscillation, να → νβ , will in general differ. Since να → νβ and να → νβ are
CP-mirror-image processes, this difference will be a violation of CP invariance.

As Eq. (16) makes clear, neutrino oscillation in vacuum from one flavor α into a different
one β implies nonzero mass splittings ∆m2

ij , hence nonzero neutrino masses. It also implies
nontrivial leptonic mixing. That is, the mixing matrix U cannot be diagonal.

Including the so-far omitted factors of h− and c, we have

∆m2

ij

L

4E
= 1.27 ∆m2

ij(eV
2)

L(km)

E(GeV)
. (17)

From Eq. (16), if the U matrix cooperates, the probability for να → νβ , β 6= α, will be
appreciable if the kinematical phase difference in Eq. (17) is O(1) or larger. This requires
only that for some ij,

∆m2

ij(eV
2) >∼

E(GeV)

L(km)
. (18)

Thus, for example, an experiment that studies 1GeV neutrinos that travel a distance
L ∼ 104km, the diameter of the earth, will be sensitive to neutrino (mass)2 splittings ∆m2

ij

as small as 10−4eV2. Through quantum interference between neutrino mass eigenstates of
different masses, neutrino oscillation gives us sensitivity to very tiny (mass)2 splittings. How-
ever, as Eq. (16) underscores, oscillation cannot determine the masses mi of the individual
mass eigenstates. To learn those will require another approach.

There are basically two kinds of neutrino oscillation experiments. In the first, an ap-
pearance experiment, one starts with a beam of neutrinos that initially are purely of flavor
α, and looks for the appearance in this beam of neutrinos of a new flavor β, β 6= α, that
were not originally present in the beam. In the second kind of experiment, a disappearance
experiment, one starts with a known flux of να, and looks to see whether some of the initial
να flux disappears as the beam travels.

By the definition of “probability”, the probability that a neutrino changes flavor, plus
the probability that it does not change flavor, must equal unity. That is, we must have

∑

β

P(να → νβ) =
∑

β

P(να → νβ) = 1 , (19)
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where the sum is over all final flavors β, including the initial flavor α. From the unitarity of U ,
which implies that

∑

β UβiU
∗
βj = δij, it immediately follows that the oscillation probabilities

of Eq. (16) do obey this constraint.

Neutrino flavor oscillation does not change the total flux in a neutrino beam. It merely
redistributes it among the flavors. However, if we create a beam of neutrinos that at birth
are of some active (i.e., weakly interacting) flavor, (muon neutrinos, for example), and some
of these neutrinos oscillate into sterile (i.e., non-interacting) flavors, then some of the total
active neutrino flux will have disappeared.

The combination of the CPT-invariance constraint of Eq. (13) and the probability con-
straint of Eq. (19) has powerful consequences for CP violation. To see this, consider the
CP-violating differences

∆αβ ≡ P(να → νβ) − P(να → νβ) . (20)

If CPT invariance holds, then from Eq. (13)

∆βα = −∆αβ . (21)

In particular,
∆αα = 0 . (22)

That is, there can be no CP-violating difference between the survival probabilities P(να →
να) and P(να → να). Hence, there can be no observable CP violation in a disappearance
experiment. Now, from Eq. (19), it follows that

∑

β

∆αβ = 0 , (23)

where the sum runs over all flavors, including β = α. However, in view of Eq. (22), Eq. (23)
implies that

∑

β 6=α

∆αβ = 0 . (24)

If there are only three neutrino flavors, νe, νµ, and ντ , then this constraint implies that, in
particular,

∆eµ + ∆eτ = 0 and ∆µe + ∆µτ = 0 . (25)

From these relations and Eq. (21), we see that

∆eµ = ∆µτ = ∆τe = −∆µe = −∆τµ = −∆eτ ≡ ∆ . (26)

In summary, if CPT holds, then the CP-violating difference ∆αβ = P(να → νβ)−P(να → νβ)
can be nonvanishing only for β 6= α. If, in addition, there are only three flavors, then the
six possibly-nonvanishing ∆αβ, shown in Eq. (26), must all be equal, apart from a predicted
minus sign [7]. (If there are more than three flavors, then Eq. (26) need not hold.)

Counter to intuition, the CP-violating difference ∆αβ ≡ P(να → νβ) − P(να → νβ)
between neutrino and what we conventionally call “antineutrino” oscillation probabilities
can still be nonvanishing even when the νi are identical to their antiparticles. Indeed, ∆αβ

is actually completely independent of whether the νi are their own antiparticles or not. We
illustrate this by comparing the processes νµ → νe and “νµ → νe”, depicted in Figure 2.
In νµ → νe, the neutrino is created together with a µ+ in π+ decay. After traveling down
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Figure 2. The CP-mirror-image oscillations νµ → νe and “νµ → νe”. In each process,
the particle that travels down the beamline is one or another of the mass eigenstates, and
the amplitude is a coherent sum over the contributions of these eigenstates, as indicated. In
“νµ → νe”, the mass eigenstate νi may or may not be identical, apart from its polarization,
to the corresponding νi in νµ → νe. The propagator for this νi, exp(−im2

i L/2E), is identical
to that for the corresponding νi in either case. The elements of the U matrix that, according
to Eq. (1), appear at the beam-particle production and detection vertices are shown.

a beamline to a detector, it is detected via its production of an e−. In the corresponding
“antineutrino” oscillation, “νµ → νe”, the particle that travels down the beamline is created
together with a µ− in π− decay, and is detected via its production in the detector of an e+.
One never directly observes the particle that travels down the beamline; it is an intermediate
state. In terms of the charged leptons that one does ( or at least can) observe, νµ → νe and
“νµ → νe” are clearly different, CP-mirror-image processes: the first involves a µ+ and e−,
while the second involves a µ− and e+. Thus, even if νi = νi, νµ → νe and “νµ → νe” can
have different probabilities, and if they do, the difference is a violation of CP invariance.

Even if νi = νi, the beam particle will create an e− in νµ → νe, but an e+ in “νµ → νe”,
because it is oppositely polarized in the two processes. Due to the chirally left-handed
structure of the weak interaction, reflected in the Lagrangian of Eq. (1), the beam particle
will have helicity h = −1/2 in the first process, but h = +1/2 in the second. Due to this
same parity-violating left-handed structure, the h = −1/2 beam particle will create an e−

(via the first term in Eq. (1)) in νµ → νe, while the h = +1/2 beam particle will create an
e+ (via the second term in Eq. (1)) in “νµ → νe”.

From the amplitude factors displayed in Figure 2, we see that while

Amp(νµ → νe) =
∑

i

U∗
µie

−im2
i

L
2E Uei , (27)
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Amp(νµ → νe) =
∑

i

Uµie
−im2

i
L
2E U∗

ei . (28)

These expressions hold whether νi = νi or not. Thus, in either case, if the CP-violating phase
δ in Eq. (3) is not zero or π, so that U is complex, the interference terms in P(νµ → νe) and
P(νµ → νe) will differ. As a result, the CP-violating difference P(νµ → νe) – P(νµ → νe) will
be nonzero. Furthermore, the value of this difference will not depend on whether νi = νi, and
this value will be correctly implied by Eq. (16), which holds regardless of whether νi = νi.

The general expression for P(
( )
να → ( )

νβ ), Eq. (16), simplifies considerably in some impor-
tant special cases. One such case is the simplified world in which there are only two charged
leptons, say e and µ, two corresponding neutrinos of definite flavor, νe and νµ, and two
neutrino mass eigenstates, ν1 and ν2, that make up νe and νµ. From our earlier analysis of
the number of parameters in a mixing matrix, we know that the 2×2 unitary mixing matrix
U for this two-flavor world may contain one mixing angle and one complex phase factor. It
may easily be shown that U may be written in the form

U ≡




Ue1 Ue2

Uµ1 Uµ2



 =





cos θ sin θ

− sin θ cos θ



 ×




eiξ/2 0

0 1



 , (29)

where θ is the mixing angle and ξ is the phase. With ∆m2
21 ≡ ∆m2 the sole (mass)2 splitting

in the problem, we find from the U of Eq. (29) and the general expression of Eq. (16) that

P(
( )
νe → ( )

νµ ) = P(
( )
νµ → ( )

νe ) = sin2 2θ sin2(∆m2L/4E) , (30)

and that

P(
( )
νe → ( )

νe ) = P(
( )
νµ → ( )

νµ) = 1 − sin2 2θ sin2(∆m2L/4E) . (31)

As we know, the real world contains (at least) three charged leptons ℓα, three corre-
sponding neutrinos of definite flavor να, and three underlying neutrino mass eigenstates νi

that make up the να. Thus, the two-neutrino oscillation formulae of Eqs. (30) and (31) do
not apply. However, if there are only three flavors, then under certain circumstances, rather
similar simple formulae do apply. To see this, we note that the three-neutrino (mass)2 spec-
trum has been observed to have the form shown in Figure 3 [2]. The splitting ∆m2

21, which

|∆m2
32|

∆m2
21

ν3

ν2ν1

|∆m2
31|

ν3

ν2ν1

(mass)2

∆m2
21

or

Figure 3. The three-neutrino (mass)2 spectrum.

drives the behavior of solar neutrinos, is roughly 30 times smaller than ∆m2
32

∼= ∆m2
31, which

drives the behavior of atmospheric neutrinos. (It is not known whether the closely-spaced
pair ν1-ν2 is at the bottom or the top of the spectrum.) If an experiment is performed with



10 Boris Kayser

L/E such that ∆m2
32 L/E = O(1), then ∆m2

21 L/E ≪ 1, and in first approximation, this ex-
periment cannot “see” the small splitting ∆m2

21. Neglecting this small splitting in Eq. (16),
this equation and the unitarity of U imply that, for β 6= α,

P(
( )
να → ( )

νβ ) ∼= 4|Uα3Uβ3|2 sin2(∆m2

32L/4E) . (32)

Similarly, they imply that, for β = α,

P(
( )
να → ( )

να) ∼= 1 − 4|Uα3|2(1 − |Uα3|2) sin2(∆m2

32L/4E) . (33)

We see that, by measuring these simple oscillation probabilities, experiments with ∆m2
32 L/4E

= O(1) can determine the flavor content of the isolated member of the spectrum, ν3.

2.2 Neutrino oscillation in matter

Inside matter, the coherent forward scattering of neutrinos from the electrons, protons, and
neutrons that make up the matter leads to neutrino effective masses and mixing angles
that differ from their vacuum counterparts. As a result, inside matter, the probabilities for
neutrino oscillations differ from their vacuum counterparts.

The Standard-Model interactions between neutrinos and other particles do not change
flavor. Thus, barring hypothetical non-Standard-Model flavor-changing interactions, the
observation of neutrino flavor change implies neutrino mass and leptonic mixing, even if the
observation involves neutrinos passing through matter.

Neutrino propagation in matter may be conveniently treated via the laboratory-frame
Schrödinger time-evolution equation

i
∂

∂t
Ψ(t) = HΨ(t) . (34)

Here, t is the time, and Ψ(t) is a multi-component neutrino wave function. Its α component,
Ψα(t), is the amplitude for the neutrino to have flavor α at time t. If there are N flavors,
the Hamiltonian H is an N × N matrix in flavor space. In matter, this matrix includes
interaction energies arising from neutrino-matter interactions mediated by W or Z exchange.
According to the Standard Model, the Z-mediated interactions neither change neutrino flavor
nor depend on the flavor. Thus, they add to H a term proportional to the identity matrix.
Such a term shifts all the eigenvalues of H by a common amount, leaving the splittings
between the eigenvalues unchanged. Now, as we have seen when discussing neutrino flavor
oscillation in vacuum, the amplitude for oscillation depends only on the relative phases of the
different neutrino eigenstates. This means that it depends only on the splittings between the
eigenvalues, and will not be affected by an interaction that merely shifts all the eigenvalues
by the same amount. Thus, if our purpose is to treat neutrino flavor oscillation, we may
omit the Z-exchange contribution to H.

The W -exchange contribution is another matter. From the Standard Model, it follows
that coherent forward νe-electron scattering via the W -exchange diagram of Figure 4 adds
to the νe-νe element of H, Hνeνe

, an interaction energy

V =
√

2GF Ne . (35)

Here, GF is the Fermi coupling constant, and Ne is the number of electrons per unit volume
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W

e

e

νe

νe

Figure 4. The W -exchange interaction that modifies neutrino flavor oscillation in matter.

in the matter through which the neutrinos are passing. The Fermi constant appears in
V because it is a measure of the amplitude for the diagram in Figure 4, and the density
Ne appears because the coherent scattering amplitude will obviously depend on how many
electrons are present to contribute. The Standard Model tells us that for antineutrinos in
matter, V is replaced by −V .

Since νe is the only neutrino flavor that couples to an electron and a W , W -mediated
ν − e scattering affects only the νe-νe element of H. Thus, its contribution to H is not
proportional to the identity matrix, and it does affect neutrino flavor oscillation.

Neutrino flavor change in matter is illustrated by the case where there are only two
significant flavors, say νe and νµ, and, correspondingly, two significant mass eigenstates.
The Hamiltonian H in the Schrödinger equation, Eq. (34), is then a 2 × 2 matrix in νe-νµ

space. Taking into account νe-e scattering via W exchange, but omitting some irrelevant
contributions that are proportional to the identity matrix, we readily find [1] that

H =
∆m2

M

4E





− cos 2θM sin 2θM

sin 2θM cos 2θM



 . (36)

Here, E is the energy of the neutrinos, and ∆m2
M and θM are, respectively, the effective

(mass)2 splitting and the effective mixing angle in matter. These effective quantities are
related to their vacuum counterparts, ∆m2 and θ, by

∆m2

M = ∆m2

√

sin2 2θ + (cos 2θ − xν)2 (37)

and

sin2 2θM =
sin2 2θ

sin2 2θ + (cos 2θ − xν)2
. (38)

In these expressions,

xν ≡ 2
√

2GFNeE

∆m2
(39)

is a measure of the importance of the effects of matter. In vacuum, Ne and consequently
xν vanishes, and, as confirmed by Eqs. (37) and (38), ∆m2

M and θM revert to the vacuum
values, ∆m2 and θ, respectively.

Imagine an accelerator-generated neutrino beam that travels a distance L ∼1000 km
through the earth to a detector. The electron density Ne encountered by this beam will
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be that of the earth’s mantle, and approximately constant. Then xν , ∆m2
M , θM , and H

will all be ∼position-independent. From Eqs. (36) and (34) and straightforward quantum
mechanics, it follows that

P(νe → νµ) = P(νµ → νe) = sin2 2θM sin2(∆m2

ML/4E) . (40)

This is the usual two-neutrino oscillation result, Eq. (30), except that the vacuum parameters
θ and ∆m2 are replaced by their counterparts in matter, θM and ∆m2

M . If Ne → 0, so that
xν → 0, the oscillation probabilities in matter of Eq. (40) become the vacuum probabilities
of Eq. (30), as they must.

The size of the effect of matter may be judged by the size of xν . For the illustrative
beam that we are considering, the actual three-neutrino vacuum (mass)2 splitting ∆m2 that
will most strongly influence flavor oscillation is probably the large one, ∆m2

31
∼= ∆m2

32.
Experimentally, ∆m2

31 ≃ 2.4 × 10−3 eV2 [8]. For this ∆m2, we find from Eq. (39) that

|xν | ≃ E/12 GeV . (41)

Thus, for E = 0.5GeV, the matter effect is quite small, for E = 2GeV it is modest, and for
E = 20GeV it is large.

As already mentioned, when antineutrinos, rather than neutrinos, propagate through
matter, the interaction energy V is replaced by −V . It follows readily that, as a result, xν ,
Eq. (39), is replaced in Eqs. (37)-(38) by

xν̄ ≡ −xν . (42)

We see that this change has the consequence that, within matter, the effective (mass)2

splitting and the effective mixing angle for antineutrinos are different than they are for
neutrinos. As a result, within matter the flavor oscillation of an antineutrino beam will differ
from that of a neutrino beam. The two-flavor Hamiltonian H is still given by Eq. (36), and
the two-flavor oscillation probability in matter of constant density is still given by Eq. (40),
but the quantities ∆m2

M and θM have different values than they did in the neutrino case.

Earlier, we raised the possibility that neutrinos are their own antiparticles. That is, we
imagined that, for a given momentum ~p and helicity h, perhaps each neutrino mass eigenstate
νi is identical to its antiparticle: νi(~p, h) = νi(~p, h). Suppose that this is indeed the case.
Will the interaction with matter still cause the flavor oscillation of an “antineutrino” beam
to differ from that of a “neutrino” beam within matter? In practical terms the answer is
“yes”. The reason is that, in practice, the “neutrino” and “antineutrino” beams that we
study are never of the same helicity. A “neutrino” is the particle “ν” produced, for example,
in the decay W+ → e+ + ν. As already noted, owing to the chirally left-handed structure
of the weak interaction, this “ν” will be of left-handed helicity: h = −1/2. In contrast, an
“antineutrino” is the particle “ν̄” produced in W− → e−+ ν̄. As already noted, owing to the
same structure of the weak interaction, this “ν̄” will be of right-handed helicity: h = +1/2.
Since the weak interaction is not invariant under parity, the interaction in matter of the
left-handed “ν” and the right-handed “ν̄” will be quite different, even if helicity is the only
difference between the “ν” and the “ν̄”. Only the first term on the right-hand side of Eq. (1)
can couple an incoming left-handed beam particle to an electron, while only the second
term can couple an incoming right-handed beam particle. These two terms lead to different
scattering amplitudes. These amplitudes do not depend on whether the “ν” and “ν̄” beams
differ only in helicity, or in some other way as well.
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Future accelerator neutrino experiments hope to study νµ → νe and νµ → νe in matter
under conditions where all three of the known neutrino mass eigenstates ν1,2,3, or equiva-
lently both of the known splittings ∆m2

31 and ∆m2
21, play significant roles. The oscillation

probabilities are then more complicated than the expression of Eq. (40). However, since
α ≡ ∆m2

21/∆m2
31 ∼ 1/30 [2] and sin2 2θ13 < 0.2 [9], the probability for νµ → νe in matter is

well approximated by [10]

P (νµ → νe) ∼= sin2 2θ13 T1 − α sin 2θ13 T2 + α sin 2θ13 T3 + α2T4 , (43)

where

T1 = sin2 θ23

sin2[(1 − xν)∆]

(1 − xν)2
, (44)

T2 = sin δ sin 2θ12 sin 2θ23 sin ∆
sin(xν∆)

xν

sin[(1 − xν)∆]

(1 − xν)
, (45)

T3 = cos δ sin 2θ12 sin 2θ23 cos ∆
sin(xν∆)

xν

sin[(1 − xν)∆]

(1 − xν)
, (46)

and

T4 = cos2 θ23 sin2 2θ12

sin2(xν∆)

x2
ν

. (47)

In these expressions, ∆ ≡ ∆m2
31L/4E is the kinematical phase of the oscillation. and xν is

the matter-effect quantity defined by Eq. (39), with ∆m2 now taken to be ∆m2
31. In the

appearance probability P(νµ → νe), the T1 term represents the oscillation due to the splitting
∆m2

31, the T4 term represents the oscillation due to the splitting ∆m2
21, and the T2 and T3

terms are the CP-violating and CP-conserving interference terms, respectively.

The probability for the corresponding antineutrino oscillation, P(νµ → νe), is the same
as the probability P(νµ → νe) given by Eqs. (43)-(47), but with xν replaced by xν̄ = −xν

and sin δ by − sin δ: both the matter effect and CP violation lead to a difference between
the νµ → νe and νµ → νe oscillation probabilities. In view of the dependence of xν on ∆m2

31,
and in particular on the sign of ∆m2

31, the matter effect can reveal whether the neutrino
mass spectrum has the closely-spaced ν1-ν2 pair at the bottom or the top (see Figure 3).
However, to determine the nature of the spectrum, and to establish the presence of CP
violation, it obviously will be necessary to disentangle the matter effect from CP violation in
the neutrino-antineutrino oscillation probability difference that is actually observed. To this
end, complementary measurements will be extremely important. These can take advantage
of the differing dependences on the matter effect and on CP violation in P(νµ → νe) and
P(νµ → νe).

Acknowledgments

It is a pleasure to thank H. Lipkin, S. Parke, and L. Stodolsky for useful conversations
relevant to the physics of these lectures. I am grateful to Susan Kayser for her crucial role
in the preparation of the manuscript.



14 Boris Kayser

References

1. Kayser, B., “Neutrino Physics”, in theProceedings of the SLAC Summer Institute of 2004, eConf
C040802, L004 (2004): hep-ph/0506165.

2. Kayser, B., “Neutrino Mass, Mixing, and Flavor Change”, to appear in the 2008 edition of
the Review of Particle Physics, by The Particle Data Group. This reference includes the phe-
nomenology of neutrino oscillation and a summary of what we have learned about the neutrinos
so far from experiment.

3. This matrix is sometimes referred to as the Maki-Nakagawa-Sakata matrix, or as the Pontecorvo-
Maki-Nakagawa-Sakata matrix, in recognition of the pioneering contributions of these scientists
to the physics of mixing and oscillation.
See Maki, Z., Nakagawa, M., and Sakata, S., Prog. Theor. Phys. 28, 870 (1962);
Pontecorvo, B., Zh. Eksp. Teor. Fiz. 53, 1717 (1967) [Sov. Phys. JETP 26, 984 (1968)].

4. For a discussion of the possibility of a nonunitary leptonic mixing matrix, see Antusch, S. et al.,
JHEP 0610, 084, (2006).

5. Kayser, B., “CP Effects When Neutrinos Are Their Own Antiparticles”, in CP Violation, ed.
C. Jarlskog (World Scientific, Singapore, 1989) p. 334.

6. Lipkin, H., Phys. Lett. B642, 366 (2006).
7. We thank S. Petcov for a long-ago conversation on how to obtain this result in a simple way.
8. The MINOS Collaboration (Michael, D. et al.), Phys. Rev. Lett. 97, 191801 (2006), and talks

by MINOS collaboration members updating their results.
9. The CHOOZ Collaboration (Apollonio, M. et al.),Eur. Phys. J. C27, 331 (2003);

Fogli, G. et al., Prog. Part. Nucl. Phys. 57, 742 (2006).
10. Cervera, A. et al., Nucl. Phys. B579, 17 (2000);

Freund, M., Phys. Rev. D64, 053003 (2001).

http://au.arxiv.org/abs/hep-ph/0506165

	Neutrino Oscillation Phenomenology*†
	Introduction
	The physics of neutrino oscillation
	Neutrino oscillation in vacuum
	Neutrino oscillation in matter



